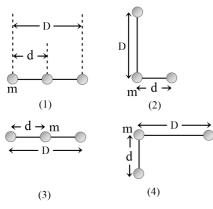


Max Marks: 100 Date: 06.11.2022


ARJUNA BATCH PHYSICS: REVISION TEST – 1 (SET A) Topic: Ray Optics + Circular Motion + Gravitation

1. The figure shows a hemispherical shell having uniform mass density. The direction of gravitational field intensity at point P will be along

- (a) a
- (b) b
- (c) c
- (d) d
- 2. Two equal masses separated by a distance (d) attract each other with a force (F). If one unit of mass is transferred from one of them to the other, the force
 - (a) Does not change
 - (b) Decreases by (G/d^2)
 - (c) Becomes Two equal masses separated by a distance (d) attract each other with a force (F). If one unit of mass is transferred from one of them to the other, (G/d^2) times
 - (d) Increases by $(2G/d^2)$
- 3. Three masses, each equal to M, are placed at the three corners of a square of side a. The force of attraction on unit mass at the fourth corner will be
 - (a) $\frac{GM}{3a^2}$
- (b) $\frac{GM}{a^2}\sqrt{3}$
- (c) $\frac{3GM}{a^2}$
- (d) $\frac{GM}{a^2} \left[\frac{1}{2} + \sqrt{2} \right]$
- 4. Four particles of masses m, 2m, 3m and 4m are kept in sequence at the corners of a square of side a. The magnitude of gravitational force acting on a particle of mass m placed at the centre of the square will be
 - (a) $\frac{24m^2G}{a^2}$
- (b) $\frac{6m^2G}{a^2}$
- $(c) \qquad \frac{4\sqrt{2}m^2G}{a^2}$
- (d) Zero

5. The figure shows four arrangements of three particles of equal masses. Rank the arrangement according to the magnitude of the gravitational force on the particle m, greatest first.

(a) 1, tie of 2 and 4, then 3

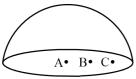
(b) 1, 4, 3, 2

(c) 2, 3, 4, 1

- (d) 4, 3, 1, 2
- 6. Three identical particles each of mass m are at the vertices of an equilateral triangle of side L. If they are to preserve their original configuration of an equilateral triangle, the speed with which they must revolve under the influence of one another's gravity in a circular orbit circumscribing the triangle is:

7. Four masses of m each are orbiting in a circle of radius r in the same direction under gravitational force. The velocity of each particle is:

- (a) $\sqrt{\frac{Gm}{r}} \frac{(1+2\sqrt{2})^2}{2}$
- $\sqrt{\frac{Gm}{r}}$
- (c) $\sqrt{\frac{Gm}{r}(1+2\sqrt{2})}$ (d)
- (d) $\sqrt{\frac{Gm}{r}} \frac{(1+2\sqrt{2})}{4}$


8. The dimensional formula for gravitational constant is
--

- $[M^{-1}L^3T^{-2}]$ (a)
- $[M^3L^{-1}T^{-2}]$ (b)
- $[M^{-1}L^2T^3]$ (c)
- $[M^2L^3T^{-1}]$ (d)

- (b) $\frac{25}{24}$ F
- (c) $\frac{24}{25}$ F (d) $\frac{100}{96}$ F

10. The mass of the earth is
$$6.00 \times 10^{24}$$
 Kg and that of the moon is 7.40×10^{22} kg. The constant of gravitation G = 6.67×10^{-11} N $-\text{m}^2/\text{kg}^2$. The potential energy of the system is -7.79×10^{28} joules. The mean distance between the earth and moon is

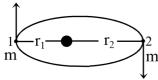
- 3.80×10^8 metres (b) (a)
- 3.37×10^6 metres
- 7.60×10^4 metres (c)
- (d) 1.90×10^2 metres
- Mass M is uniformly distributed only on the curved surface of a thin hemispherical shell. A, B and C are three 11. points on the circular base of the hemisphere, such that A is the centre. Let the gravitational potential at points A, B and C be V_A, V_B, V_C respectively. Then

 $V_A > V_B > V_C$ (a)

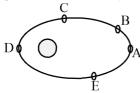
 $\begin{array}{ll} \text{(b)} & V_C > V_B > V_A \\ \text{(d)} & V_A = V_B = V_C \\ \end{array}$

 $V_B > V_A$ and $V_B > V_C$ (c)

12. Three particles of equal mass m are situated at the vertices of an equilateral triangle of side
$$l$$
. The work done in increasing the side of the triangle to $2l$ will be:


- (a)
- (b)
- (c) $-\frac{3Gm^2}{21}$
- (d) $\frac{3Gm^2}{1}$
- The real velocity and the angular momentum of the planet are related by which of the following relations? (where 13. m_p is the mass of the planet)

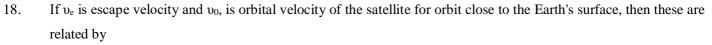
- $\frac{\Delta \vec{A}}{\Delta t} = \frac{\vec{L}}{2m_p} \qquad (b) \qquad \frac{\Delta \vec{A}}{\Delta t} = \frac{\vec{L}}{m_p} \qquad (c) \qquad \frac{\Delta \vec{A}}{\Delta t} = \frac{2\vec{L}}{m_p} \qquad (d) \qquad \frac{\Delta \vec{A}}{\Delta t} = \frac{\vec{L}}{\sqrt{2}m_p}$


- 14. Two planets revolve with same angular velocity about a star. The radius of orbit of the outer planet is twice the radius of orbit of the inner planet. If T is the time period of the revolution of the outer planet, find the time in which the inner planet will fall into the star, if it was suddenly stopped.
 - (a)
- (b)
- (c)
- (d)

15. The ratio of KE of the planet at points 1 and 2 is:

- $\left(\frac{\mathbf{r}_2}{\mathbf{r}}\right)^2$ (b)

- 16. The planet mercury is revolving in an elliptical orbit around the sun, as shown. The kinetic energy of mercury at point P is denoted by K_p. Then:


 $K_{\text{A}} < K_{\text{B}} < K_{\text{D}} < K_{\text{E}}$ (a)

 $\begin{array}{ll} (b) & \quad K_D < K_B < K_E < K_C < K_A \\ (d) & \quad K_E < K_D < K_C < K_B < K_A \end{array}$

 $K_D < K_C < K_E < K_B < K_A$ (c)

- 17. A body is imparted a velocity v from the surface of the earth. If v_0 is orbital velocity and v_e is the escape velocity then for
 - $\upsilon = \upsilon_0$ the body follows a circular track around the earth. (A)
 - $\upsilon = \upsilon_0$ but $< \upsilon_e$, the body follows elliptical path around the earth (B)
 - $\upsilon < \upsilon_0$ the body follows elliptical path and returns to surface of earth (C)
 - $\upsilon > \upsilon_e$, the body follows hyperbolic path and escapes the gravitational pull of the earth (D)
 - (a) A, B
- B, C (b)
- A, B, C (c)
- (d) A, B, C, D

(a)
$$v_0 = \sqrt{2}v_e$$

(b)
$$v_0 = v_e$$

(c)
$$v_e = \sqrt{2}v_0$$

(d)
$$v_e = \sqrt{2v_0}$$

(a)
$$\sqrt{\frac{4}{3}gR}$$

(b)
$$\sqrt{\frac{2}{3}gR}$$

(c)
$$\frac{4}{3}\sqrt{gR}$$

(d)
$$2\sqrt{gR}$$

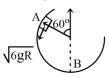
(a)
$$\sqrt{\frac{2GM}{R}}$$

(b)
$$\sqrt{\frac{2GM}{R^2}}$$

(c)
$$\sqrt{2gR^2}$$

(d)
$$\sqrt{\frac{4GM}{R^2}}$$

21. A stone tied to a string of length L is whirled in a vertical circle with the other end of the string at the centre. At a certain instant of time, the stone is at its lowest position and has a speed u. The magnitude of the change in its velocity as it reaches a position where the string is horizontal is


(a)
$$\sqrt{u^2 - 2gL}$$

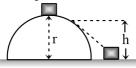
(b)
$$\sqrt{2gL}$$

$$(c) \qquad \sqrt{u^2 - gL}$$

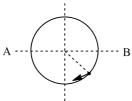
(d)
$$\sqrt{2(u^2 - gL)}$$

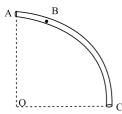
22. The figure shows a smooth vertical circular track AB of radius R. A block slides along the surface AB when it is given a velocity equal to $\sqrt{6gR}$ at point A. The ratio of the force exerted by the track on the block at point A to that at point B is

(a) 0.25

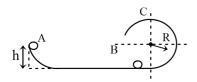

(b) 0.35

(c) 0.45


(d) 0.55


- 23. A body is revolving in a vertical circle with constant mechanical energy. The speed of the body at the highest point is $\sqrt{2rg}$. The speed of the body at the lowest point is
 - (a) $\sqrt{7gr}$
- (b) $\sqrt{6gr}$
- (c) $\sqrt{8g}$
- (d) $\sqrt{9gr}$
- 24. A small body of mass m slides down from the top of a hemisphere of radius r. The surface of the block and hemisphere are frictionless. The height at which the body loses contact with the surface of the sphere is

- (a) $\frac{3}{2}$
- (b) $\frac{2}{3}$ 1
- (c) $\frac{1}{2}gt^2$
- (d) $\frac{v^2}{2g}$
- 25. A particle of mass 'm' oscillates along the horizontal diameter AB inside a smooth spherical shell of radius R. At any instant K.E. of the particle is K. Then force applied by particle on the shell at this instant is:


- (a) $\frac{K}{R}$
- (b) $\frac{2K}{R}$
- (c) $\frac{3K}{R}$
- (d) $\frac{K}{2R}$
- 26. The tube AC forms a quarter circle in a vertical plane. The ball B has an area of cross-section slightly smaller than that of the tube, and can move without friction through it. B is placed at A and displaced slightly. It will

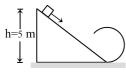
- (a) Always be in contact with the inner wall of the tube
- (b) Always be in contact with the outer wall of the tube
- (c) Initially be in contact with the inner wall and later with the outer wall
- (d) Initially be in contact with outer wall and later with the inner wall

27. Ball A of mass m, after sliding from an inclined plane, strikes elastically another ball B of the same mass at rest. Find the minimum height h so that ball B just completes the circular motion of the surface at C. All surfaces are smooth.

- (a) $h = \frac{5}{2}R$
- (b) h = 21
- (c) $h = \frac{2}{5}R$
- (d) h = 3R

28. The maximum velocity at the lowest point, so that the string just slack at the highest point in a vertical circle of radius '*l*'.

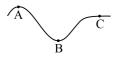
- (a) \sqrt{gl}
- (b) $3\sqrt{gl}$
- (c) $\sqrt{5gl}$
- (d) $\sqrt{7gl}$


29. A body of mass m hangs at one end of a string of length l, the other end of which is fixed. It is given a horizontal velocity so that the string would just reach where it makes an angle of 60° with the vertical. The tension in the string at mean position is:

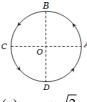
- (a) 2 mg
- (b) mg
- (c) 3 mg
- (d) $\sqrt{3}$ mg

30. A fighter plane is moving in a vertical circle of radius 'r'. Its minimum velocity at the highest point of the circle will be

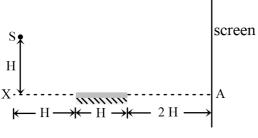
- (a) $\sqrt{3gr}$
- (b) $\sqrt{2g}$
- (c) \sqrt{g}
- (d) $\sqrt{\operatorname{gr}/2}$


31. As per given figure to complete the circular loop what should be the radius if initial height is 5 m

- (a) 4 m
- (b) 3 m
- (c) 2.5 m
- (d) 2 m


32. A car moves on a straight road with uniform speed. Normal reaction at A, B and C are N_A , N_B and N_C respectively. Then:

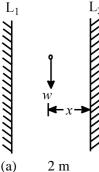
- (a) $N_A > N_B$
- (b) $N_A > N_C$
- (c) $N_A = N_C$
- $(d) N_B > N_C > N_A$
- 33. A ball of mass 1/2 kg is moved in a vertical circle. When ball is at P, then calculate its tangential acceleration [take, $g = 10 \text{ m/s}^2$]



- (a) $2m/s^2$
- (b) $3m/s^2$
- (c) $5m/s^2$
- (d) $1 \text{ m} / \text{s}^2$
- 34. Figure shows a body of mass m moving with a uniform speed v along a circle of radius r. The change in velocity in going from A to B is

- (a)
- (b) υ/√
- (c) v

- (d) zero
- 35. A point source has been placed as shown in the figure. What is the length on the screen that will receive reflected light from the mirror?



- (a) 2 H
- (b) 3 I
- (c) H
- (d)

None of these

- Two plane mirrors are inclined to each other such that a ray of light incident on the first mirror is parallel to the 36. second and light reflected from the second mirror is parallel to the first mirror. Determine the angle between the two mirrors.
 - 60° (a)
- (b) 30°
- 90° (c)
- 180° (d)
- 37. Two plane mirrors L₁ and L₂ are parallel to each other and 3 m part. A person standing x m from the right mirror L₂ looks into this mirror and sees a series of images. The distance between the first and second image is 4 m. Then the value of x is

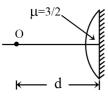
- 2 m
- (b) 1.5 m
- 1 m (c)
- (d) 2.5 m
- 38. A luminous point object is moving along the principal axis of a concave mirror of focal length 12 cm towards it. When its distance from the mirror is 20 cm its velocity is 4 cm/s. The velocity of the image in cm/s at that instant is:
 - (a) 6, towards the mirror

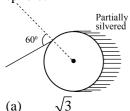
6, away from the mirror (b)

(c) 9, away from the mirror

- (d) 9, towards the mirror
- 39. A lens of focal length 20.0 cm and aperture radius 2.0 cm is placed at a distance 30.0 cm from a point source of light. On the other side a screen is placed at a distance 50.0 cm from the lens. The radius of spot of light formed on screen is. (Neglect spherical aberration through lens):
 - 0.5 cm (a)
- 0.3 cm (b)
- 0.2 cm (c)
- 1.0 cm (d)

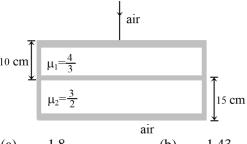
40. A lens of focal length 20.0 cm and aperture radius 2.0 cm is placed at a distance 30.0 cm from a point source of


light. On the other side a screen is placed at a distance 50.0 cm from the lens. The radius of spot of light formed on screen is. (Neglect spherical aberration through lens):

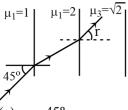

(a) 20 cm behind the mirror (b) 7.5 cm in front of the mirror

7.5 cm behind the mirror (c)

- 2.5 cm in front of the mirror (d)
- A plano-convex lens of focal length 10 cm is silvered at its plane face. The distance d at which an object must be 41. placed in order to get its image on itself is:


- 5 cm (a)
- (b) 20 cm
- (c) 10 cm
- (d) 2.5 cm
- In an isosceles prism of prism angle 45°, it is found that when the angle of incidence is same as the prism angle, 42. the emergent ray grazes the emergent surface. Find the refractive index of the material of the prism. For what angle of incidence the angle of deviation will be minimum?
 - (a) 1
- $\sqrt{3}$,41.51° (b)
- 2 (c)
- 3 (d)
- 43. A ray is incident on a glass sphere as shown in the figure. The opposite surface of the sphere is partially silvered. If the net deviation of the ray transmitted at the partially silvered surface is 1/3 rd of the net deviation suffered by the ray reflected at the partially silvered surface (after emerging out of the sphere). Find the refractive index of the sphere.

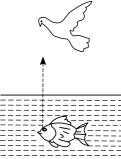
- (b) 2
- (c) 1.5
- $3\sqrt{3}$ (d)



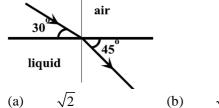
- The height to which water must be filled into a vessel of height 21 cm such that it appears half-filled when viewed 44. from above is $(\mu = 4/3)$
 - 8 cm (a)
- (b) 10.5 cm
- (c) 12 cm
- (d) 14 cm
- 45. Considering normal incidence of ray, the equivalent refractive index of combination of two slabs shown in the figure is

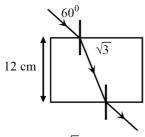
- (a) 1.8
- (b) 1.43
- (c) 2
- (d) 1.21
- A ray of light is incident at an angle of 60° with the normal to a cm, thick plate ($\mu = \sqrt{3}$). The shift in the path of 46. the ray as it emerges out from the plate is
 - (a) 1 cm
- (b) 1.2 cm
- (c) 0.5 cm
- (d) 1.8 cm

47. In the figure shown is equal to $\angle r$ is equal to



- 45°
- (b) 30°
- (c) 60°
- (d) 90°




48. A fish is vertically below a flying bird moving vertically down towards water surface. The bird will appear to the fish to be

- moving faster than its speed and also away from the real distance (a)
- moving faster than its real speed and never than its real distance. (b)
- (c) moving slower than its real speed and also nearer than its real distance
- (d) moving slower than its real speed and away from the real distance
- 49. Figure shows the path of a ray of light from air into a liquid. The index of refraction of the liquid with respect to air is

- $\sqrt{3}/\sqrt{2}$ (b)
- $\sqrt{3}$ (c)
- $\sqrt{2}/\sqrt{3}$ (d)
- A glass slab has width 12 cm. The refractive index of glass is $\sqrt{3}$. A ray of monochromatic light is incident on 50. one face at an angle of 60° as shown in the figure. The lateral displacement the ray suffers in passing through the slab is:

- $2\sqrt{3}$ cm (a)
- $4\sqrt{3}$ cm (b)
- (c) 6 cm
- $3\sqrt{3}$ cm (d)

Date: 06.11.2022

ARJUNA BATCH CHEMISTRY: REVISION TEST-1 (SET A)

Topic: Mole Concept + Redox Reaction + Periodic Properties + S Block + Hydrogen

51.	The a	cidic, basic and an	nphoteric	oxides, respectivel	y, are:			
	(a)	MgO, Cl ₂ O, Al ₂	O_3		(b)	Cl ₂ O, CaO, P ₄ O ₁	0	
	(c)	Na ₂ O, SO ₃ , Al ₂ O	O_3		(d)	N ₂ O ₃ , Li ₂ O, Al ₂ O) ₃	
52.	2.76	g of silver carbona	te on bein	ng strongly heated y	rield a resid	ue weighing:		
	(a)	2.64 g	(b)	2.48 g	(c)	2.16 g	(d)	2.32 g
53.	Total	number of groups	in Mende	eleef's table				
	(a)	18	(b)	9	(c)	7	(d)	10
54.	Two	oxides of a metal	contain 5	0% and 40% metal	l M respect	ively. If the formu	la of the f	First oxide is MO ₂ , the
	formu	ıla of the second o	xide will	be				
	(a)	MO_2	(b)	MO_3	(c)	M_2O	(d)	M_2O_5
55.	0.56	gm of gas occupies	280 cm ³	at NTP, then its me	olecular ma	ass is		
	(a)	4.8	(b)	44.8	(c)	2	(d)	22.4
56.	An at	om of element has	2K, 8L a	and 3M electrons. T	hen that ele	ement is placed in		
	(a)	I A group	(b)	II A group	(c)	III A group	(d)	IV A group
57.	The f	ollowing data are a	vailable.					
	(i)	% of Mg in Mg	o and in N	$MgCl_2$	(ii)	% of C in CO &	CO_2	
	(iii)	% of Cr in K ₂ C ₁	r_2O_7 and l	K ₂ CrO ₄	(iv)	% of Cu isotopes	s in Cu me	tal
	The la	aw of multiple proj	portions 1	nay be illustrated b	y data.			
	(a)	i & ii	(b)	only ii	(c)	i, ii & iii	(d)	only iii
58.	Whic	h of the following	ions has t	the smallest radius	?			
	(a)	Be^{2+}	(b)	Li^+	(c)	O^{2-}	(d)	F-

59.	The ult	imate products of or	xidation	of most of hydrogen	and cart	oon in food stuffs are		
	(a)	H ₂ O ₂ and CO			(b)	CH ₃ OH and CH ₃ CO	ЮН	
	(c)	H ₂ O and CO ₂			(d)	H ₂ and C		
60.	The nu	mber of moles of so	dium ox	aide in 620 g of it is				
	(a)	1 mol	(b)	10 moles	(c)	18 moles	(d)	100 moles
61.	The nu	mber of significant	figures i	n 6.0023 are				
	(a)	5	(b)	4	(c)	3	(d)	1
62.	How m	any electrons and p	rotons a	re present in the balar	nced half	f reaction $NO_2^- \rightarrow NO_2^-$)	
	(a)	1, 2	(b)	1, 1	(c)	2, 2	(d)	0, 1
63.	Give th	e name of the inert	gas ator	n in which the total n	umber o	f d-electrons is equal	to the d	ifference in numbers
	of total	p and s-electrons						
	(a)	Не	(b)	Ne	(c)	Ar	(d)	Kr
64.	The first	st and second ionisa	ition ent	halpies of a metal are	496 and	d 4560 kJ mol ⁻¹ , resp	ectively.	Hoe many moles of
	HCl an	d H ₂ SO ₄ , respective	ly, will	be needed to react con	mpletely	with 1 mole of the m	netal hyd	lroxide?
	(a)	1 and 0.5	(b)	2 and 0.5	(c)	1 and 1	(d)	1 and 2
65.	MnO_{-4}	$+ SO_3^{-2} + H^+ \rightarrow M_1$	$n^{+2} + SC$	O_4^{-2} . The number of H	+ ions in	volved is		
	(a)	2	(b)	6	(c)	8	(d)	16
66.	Rearran	nge the following (l	to IV)	in the order of increa	sing ma	asses and choose the	correct a	answer from (1), (2),
	(3) and	(4) (Atomic mass:	N = 14,	O = 16, $Cu = 63$).				
	I.	1 molecule of oxyg	gen		II.	1 atom of nitrogen		
	III.	$1 \times 10^{-10} \mathrm{g} \; \mathrm{molecu}$	lar weig	ht of oxygen	IV.	1×10^{-10} g atomic w	eight of	copper
	(a)	II < I < III < IV	(b)	IV < III < II < I	(c)	II < III < I < IV	(d)	III < IV < I < II
67.	The sta	ble oxidation state of	of Thalli	um, a IIIA group elen	nent is			
	(a)	+1	(b)	+3	(c)	-3	(d)	+5

68.	Elemen	nt with atomic numb	oer [Z=1	11] is named in the h	onour of	<u>.</u>		
	(a)	Hassium	(b)	Sea Borgium	(c)	Meitnerium	(d)	Rontgenium
69.	In the r	reaction,						
	HAsO ₂	$2 + \operatorname{Sn}^{2+} \longrightarrow \operatorname{As} + \operatorname{Sn}^4$	⁴⁺ + H ₂ O	oxidizing agent is				
	(a)	Sn^{2+}	(b)	Sn^{4+}	(c)	As	(d)	HAsO ₂
70.	Which	of the following sec	quence r	regarding the first ion	ization p	otential of coinage m	etal is co	orrect?
	(a)	Cu > Ag > Au	(b)	Cu < Ag < Au	(c)	Cu > Ag < Au	(d)	Ag > Cu < Au
71.	How m	nany ml of 1 (M) H ₂	SO ₄ is re	equired to neutralise	10 ml of	1 (M) NaOH solution	n?	
	(a)	2.5	(b)	5.0	(c)	10.0	(d)	20.0
72.	The nu	mber of neutrons in	a drop	of water (20 drops= 1	mL) at	4°C		
	(a)	6.023×10^{22}	(b)	1.338×10^{22}	(c)	6.023×10^{20}	(d)	7.338×10^{22}
73.	Crystal	s of which pair are	isomorp	hous				
	(a)	ZnSO ₄ , SnSO ₄	(b)	MgSO ₄ , CaSO ₄	(c)	ZnSO ₄ , MgSO ₄	(d)	PbSO ₄ , NiSO ₄
74.	Diagon	al relationship is sh	nown by					
	(a)	B - S	(b)	Li - Mg	(c)	Mg - Ca	(d)	S - Se
75.	The an	nount of energy rele	eased w	hen 10 ⁶ atoms of iod	line in v	apour state are conve	erted to	ions is $4.9 \times 10^{-13} \text{ J}.$
	What is	s the electron affinit	ty of iod	ine in eV/atom?				
	(a)	2.0	(b)	2.5	(c)	3.06	(d)	2.75
76.	1.25 g	of a solid dibasic ac	cid is co	mpletely neutralised	by 25 m	l of 0.25 molar Ba(O	H)2 solu	tion. Molecular mass
	of the a	acid is						
	(a)	100	(b)	150	(c)	120	(d)	200
77.	Oxidat	ion number of Cl in	NOCIO	O ₄ is				
	(a)	+7	(b)	-7	(c)	+5	(d)	-5

78.	The s	standard reduction po	otentials	s of Cu ²⁺ /Cu and Cu	2+/Cu+ a	are 0.337 and 0.153	V respe	ectively. The standard
	electr	ode potentials of Cu ⁺	Cu hal	f cell is				
	(a)	0.521 V	(b)	0.184 V	(c)	0.490 V	(d)	0.827 V
79.	H ₂ ev	olved at STP on com	plete re	action of 27 g of Alu	minium	with excess of aqueou	ıs NaOI	H would be
	(a)	22.4	(b)	44.8	(c)	67.2	(d)	33.6 litres
80.	One r	nole of acidified K ₂ C	Cr ₂ O ₇ on	reaction with excess	KI will	liberatemole (s) of	I_2	
	(a)	6	(b)	1	(c)	7	(d)	3
81.	Hydro	ogen after losing one	electroi	n forms H ⁺ resembles	in this p	property with:		
	(a)	alkali metals			(b)	halogens		
	(c)	alkaline earths me	tals		(d)	transitional elemen	ts	
82.	Moist	hydrogen cannot be	dried o	ver concentrated H ₂ So	O4 becau	ıse:		
	(a)	it can catch fire			(b)	it is reduced by H ₂ S	SO_4	
	(c)	a part of it is oxidi	zed by	H_2SO_4	(d)	it decomposes H ₂ So	O_4	
83.	Whic	h can adsorb large vo	olumes o	of hydrogen gas?				
	(a)	Colloidal solution	of palla	dium	(b)	Finely divided nick	el	
	(c)	Colloidal ferric hy	droxide	;	(d)	Finely divided plats	inum	
84.	The n	nost dangerous metho	od of pr	eparing hydrogen wo	uld be b	y the action of HCl ar	nd	
	(a)	Zn	(b)	Fe	(c)	K	(d)	Al
85.	Hydro	ogen gas is not libera	ted whe	n the following metal	ls added	to dil. HCl:		
	(a)	Mg	(b)	Sn	(c)	Ag	(d)	Zn
86.	Heav	y water reacts with A	l_4C_3 to	form:				
	(a)	CD ₄ and Al(OH) ₃	(b)	CH ₄ and Al(OD) ₃	(c)	CD ₄ and Al(OD) ₃	(d)	None of these
87.	Acidi	fied solution of chror	nic acid	on treatment with H	₂ O ₂ yield	ds:		
	(a)	$CrO_3 + H_2O + O_2$			(b)	$Cr_2O_2 + H_2O + O_2$		
	(c)	$Cr\Omega_c + H_c\Omega + K_cS$	so.		(d)	$H_0Cr_0O_7 + H_0O + O$),	

88.	In whic	ch of the following i	reaction,	H ₂ O ₂ is acting as a r	educing	agent?		
	(a)	SO ₂ + H ₂ O ₂	\longrightarrow H ₂ S	5O ₄	(b)	2KI + H ₂ O ₂	→ 2KOl	$H + I_2$
	(c)	$Ag_2O + H_2O_2$	$\longrightarrow 2i$	$Ag + H_2O + O_2$	(d)	PbS + 4H ₂ O ₂ ———	→ PbS	$O_4 + 4H_2O$
89.	Maxim	um concentration o	f ortho-I	$ m H_2$ in ordinary hydrog	gen is:			
	(a)	75% ortho- $H_2 + 25$	5% para-	\cdot H ₂	(b)	25% ortho- $H_2 + 75\%$	6 para-H	I_2
	(c)	50% ortho- $H_2 + 50\%$)% para-	$-H_2$	(d)	99% para-H ₂ + 1% o	ortho-H ₂	
90.	The hy	drogen at the mome	ent of its	formation is called:				
	(a)	atomic	(b)	ortho	(c)	para	(d)	nascent
91.	Sodium	n forms Na+ and not	Na ²⁺ be	cause:				
	(a)	sodium contains or	nly one	electron in outermost	shell			
	(b)	first ionization pot	ential is	small and the differe	nce in fi	rst and second ionizat	ion pote	ntials is large
	(c)	radius of Na ²⁺ is m	nuch sma	aller than of Na+				
	(d)	None of these						
92.	Most re	eactive meal among	the follo	owing is:				
	(a)	K	(b)	Li	(c)	Na	(d)	Mg
93.	Which	is more basic in cha	aracter?					
	(a)	RbOH	(b)	КОН	(c)	LiOH	(d)	NaOH
94.	Sodium	burns in dry air to	give:					
	(a)	Na ₂ O	(b)	Na_2O_2	(c)	NaO ₂	(d)	Na ₃ N
95.	Which	of the following co	mpound	s on reaction with Na	OH and	H ₂ O ₂ gives yellow co	lour?	
	(a)	$Zn(OH)_2$	(b)	Cr(OH) ₃	(c)	Al(OH) ₃	(d)	None of these
96.	Among	the following, whi	ch has n	ninimum solubility in	water?			
	(a)	КОН	(b)	CsOH	(c)	LiOH	(d)	RbOH

97.	The pai	r of compounds wh	ich cann	ot exist together in so	lution is	: :		
	(a)	NaHCO ₃ and NaOl	Н		(b)	Na ₂ CO ₃ and NaHCO) ₃	
	(c)	Na ₂ CO ₃ and NaOH	I		(d)	NaHCO ₃ and NaCl		
98.	Which a	alkaline earth metal	does no	t impact the flame co	lour?			
	(a)	Sr	(b)	Be	(c)	Ra	(d)	Ca
99.	Which i	is used to remove N	2 from a	ir?				
	(a)	Mg	(b)	P	(c)	H_2SO_4	(d)	CaCl ₂
100.	Which 1	metal does not form	ionic h	ydride?				
	(a)	Ba	(b)	Mg	(c)	Ca	(d)	Sr

Max Marks: 100 Date: 06.11.2022

ARJUNA BATCH PHYSICS: REVISION TEST – 1 (SET A) ANSWER KEY Topic: Ray Optics + Circular Motion + Gravitation

1.	(c)	2.	(b)	3.	(d)	4.	(c)	5.	(a)
6.	(b)	7.	(d)	8.	(a)	9.	(c)	10.	(a)
11.	(d)	12.	(c)	13.	(a)	14.	(a)	15.	(b)
16.	(c)	17.	(d)	18.	(c)	19.	(a)	20.	(a)
21.	(d)	22.	(d)	23.	(b)	24.	(b)	25.	(c)
26.	(c)	27.	(a)	28.	(c)	29.	(a)	30.	(c)
31.	(d)	32.	(d)	33.	(c)	34.	(a)	35.	(a)
36.	(a)	37.	(c)	38.	(c)	39.	(b)	40.	(d)
41.	(c)	42.	(b)	43.	(a)	44.	(d)	45.	(b)
46.	(a)	47.	(b)	48.	(a)	49.	(b)	50.	(b)

CHEMISTRY : REVISION TEST-1 (SET A) ANSWER KEY Topic: Mole Concept + Redox Reaction + Periodic Properties + S Block + Hydrogen

51.	(d)	52.	(c)	53.	(b)	54.	(b)	55.	(b)
56.	(c)	57.	(b)	58.	(a)	59.	(c)	60.	(b)
61.	(a)	62.	(a)	63.	(d)	64.	(a)	65.	(b)
66.	(a)	67.	(a)	68.	(d)	69.	(d)	70.	(c)
71.	(b)	72.	(b)	73.	(c)	74.	(b)	75.	(c)
76.	(d)	77.	(a)	78.	(a)	79.	(d)	80.	(d)
81.	(a)	82.	(c)	83.	(a)	84.	(c)	85.	(c)
86.	(c)	87.	(c)	88.	(c)	89.	(a)	90.	(d)
91.	(b)	92.	(a)	93.	(a)	94.	(b)	95.	(b)
96.	(c)	97.	(a)	98.	(b)	99.	(a)	100.	(b)